

 Navigation

 	
 index

 	
 next |

 	2013-norwich-bioinfo 0.1 documentation

2013 Bioinformatics Workshop at Norwich

	Titus Brown <ctb@msu.edu> and Alexandra Pawlik <a.pawlik@software.ac.uk>

We will use this Etherpad site [https://etherpad.mozilla.org/2013-norwich] to distribute commands.

Explain: minute cards; stick notes on monitors.

The khmer project: https://github.com/ged-lab/khmer/

The final ‘sqer’ project: https://github.com/ngs-docs/sqer-demo

	Session I: Testing
	The ‘sqer’ Python package

	Writing some code (and tests)
	Exercises

	Writing a script

	Testing command line scripts

	Regression tests with command line scripts

	Reorganize

	Exercises

	Testing summary

	Advanced exercises

	Session 2: git / version control
	Basic git

	Git pull requests

	External Resources

	Session 3: Python packages and installs
	Using virtualenv

	Building a ‘setup.py’

	Building a default/basic ‘Makefile’

	Documentation

	Session 4: Analysis pipelines and IPython Notebook
	A slightly more useful sqer script
	Exercises

	Write a little analysis pipeline

	Start up IPython Notebook

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, C. Titus Brown.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	2013-norwich-bioinfo 0.1 documentation

Session I: Testing

For the rest of the sessions, you’ll need an account at http://github.com/
as well as an account at https://readthedocs.org/.

The ‘sqer’ Python package

We’re going to create a Python utility called ‘sqer’ to give read statistics.

Let’s start by creating a ‘sqer’ library.

Make a directory ‘sqer’.

Inside this make another directory ‘sqer’.

In ‘sqer/sqer’ open a file ‘__init__.py’

From within the top level directory ‘sqer’ you should be able to do

python -c "import sqer; print sqer"

Go into the ‘sqer’ directory and initialize a git repo:

git init

Add the sqer/ package directory:

git add *

git status

Note the .pyc file – this is not a source file, but rather a generated file.
Let’s remove it from the commit:

git rm --cached sqer/__init__.pyc

and also ignore it from here on out:

echo '*.pyc' > .gitignore

Now:

git status

will not show it as a file, and ‘git add’ will not add it unless it’s
forced.

Next,

git add .gitignore

and commit:

git commit -am "initial commit"

Now ‘git status’ should show you only untracked files, no differences.

Note

You can use ‘git log’ to get a history of commits.

Writing some code (and tests)

Let’s start by writing a function that computes the sum of legit DNA
bases in a sequence record. The main thing you need to know here is
that each sequence record will come from the screed [https://screed.readthedocs.org] utility, which will give us record
objects with a ‘name’, ‘sequence’, optional ‘accuracy’ (for FASTQ),
and optional ‘description’ (from the FASTA/FASTQ sequence name).

So, put:

def sum_bp(record):
 return len(record.sequence)

in ‘sqer/__init__.py’.

Now, let’s add a test. Create a directory ‘tests’ and put a file
‘test_basic.py’ in it; this file should contain:

import sqer

class FakeRecord(object):
 def __init__(self, sequence, name=''):
 self.sequence = sequence
 self.name = name

def test_sum_bp():
 r = FakeRecord('ATGC')
 assert sqer.sum_bp(r) == 4

Here, ‘FakeRecord’ is a stub object that lets you test your code by
faking an object type solely for testing.

Now, run:

nosetests

You should see:

.
--
Ran 1 test in 0.003s

OK

You can also run ‘nosetests -v’ to get more verbose output.

Tests pass? Great, add and commit it with git!

git add tests
git commit -am "initial tests"

Now, let’s add a new function, ‘sum_bp_records’, to sqer/__init__.py.

def sum_bp_records(records):
 total = 0
 for record in records:
 total += sum_bp(record)

 return total

How shall we test this? Well, all it expects is an iterable of records:
add this to tests/test_basic.py:

def test_sum_bp_records():
 rl = [FakeRecord("A"), FakeRecord("G")]
 assert sqer.sum_bp_records(rl) == 2

Now run ‘nosetests’ again – works? No complaints?

Great, commit it with git:

git status
git commit -am "added sum_bp_records and test"

Exercises

	Write a test to handle (and ignore) non-ACGT. (Fix the code.)

	Write a test to verify that lower-case is handled. (Fix the code.)

	Write a function to calculate the average length of records in a file;
test it.

Writing a script

Let’s write something to let us use this from the command line. Put the
following code in count-read-bp.py:

#! /usr/bin/env python
import argparse
import screed
import sqer

def main():
 parser = argparse.ArgumentParser()
 parser.add_argument('filenames', nargs='+')

 args = parser.parse_args()

 total = 0
 for filename in args.filenames:
 records = screed.open(filename)
 total += sqer.sum_bp_records(records)

 print '%d bp total' % total

if __name__ == '__main__':
 main()

Next, ‘chmod +x count-read-bp.py’. This makes UNIX aware that it’s an
executable file.

Try running it:

./count-read-bp.py

Note the friendly error message! Note that you can use ‘-h’, too.

How do we test this??

Put:

>a
ATCG
>b
GCTA

in a file ‘reads.fa’. Then:

./count-read-bp.py reads.fa

You should see ‘8 bp total’. Great!

Commit:

git add count-read-bp.py reads.fa
git commit -am "command-line script count-read-bp, plus test data"

Check with ‘git status’. Do you have editor remainder files (like ~ files
from using emacs)? Add them to .gitignore and commit the changes.

Testing command line scripts

Put this in a file ‘tests/test_scripts.py’:

import subprocess
import os
thisdir = os.path.dirname(__file__)
thisdir = os.path.normpath(thisdir)

sqerdir = os.path.join(thisdir, '../')
sqerdir = os.path.normpath(sqerdir)

def test_count_reads():
 scriptpath = os.path.join(sqerdir, 'count-read-bp.py')
 datapath = os.path.join(sqerdir, 'reads.fa')

 p = subprocess.Popen([scriptpath, datapath],
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE)
 (out, err) = p.communicate()

 assert p.returncode == 0
 assert "8 bp total" in out, out

Now run ‘nosetests’ – what does it say?

Add and commit:

git add tests/test_scripts.py
git commit -am "added test for the count-read-bp.py script"

Regression tests with command line scripts

Grab some data from somewhere (e.g. 25k.fq.gz from training files) and
put it in test-reads.fq. You can subset the 25k.fq.gz file if you want:

gunzip -c 25k.fq.gz | head -400 > test-reads.fq

Add another test to sqer/test_scripts.py:

def test_count_reads_2():
 scriptpath = os.path.join(sqerdir, 'count-read-bp.py')
 datapath = os.path.join(sqerdir, 'test-reads.fq')
 print thisdir, sqerdir, scriptpath, datapath

 p = subprocess.Popen([scriptpath, datapath],
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE)
 (out, err) = p.communicate()

 assert p.returncode == 0
 assert "8 bp total" in out, out

And now run ‘nosetests’.

It should break, right? :)

Fix the last ‘assert’ code, then rerun; when it all passes, do:

git add test-reads.fq
git status

Make sure that only what you think should be there is there; then do:

git commit -am "added regression test"

Reorganize

Let’s put the data files under data/:

mkdir data
mv test-reads.fq data
mv reads.fa data/test-reads.fa

...now, fix the tests!

Exercises

	Add friendly output to the script, e.g. files opened, # records processed.

	Add a flag for ‘silence’:

parser.add_argument("-s", dest="silent", type=bool)

and

if args.silent: ...

Testing summary

Points to cover:

	any functions named ‘test*’ in files named ‘test*’ are executed.

	unit tests are for small bits of code;

	script tests (the first one) are for testing the script API;

	regression tests are for making sure behavior stays the same.
(We didn’t actually count the number of bases in that file, right?
We just assumed it was counting them right.)

	these three types of tests are for different purposes and test different
things! Which one is most useful?

	‘print’ statements and the like inside the tests are captured, and only
output upon error.

	assert statements are the way to check things.

Slightly more advanced topics if people are interested:

	what do you do about output files? (temp directories)

	how do you measure if your tests are “good enough”? (code coverage)

Advanced exercises

	Write a reservoir sampling algorithm.

	An Introduction to the Nose Testing Framework

http://ivory.idyll.org/articles/nose-intro.html

 Copyright 2013, C. Titus Brown.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	2013-norwich-bioinfo 0.1 documentation

Session 2: git / version control

Basic git

Tutorial link:

https://github.com/apawlik/TGAC-6-Nov-2013/tree/master/version-control

Cover:

	branching and merging;

	conflicts;

	creating a project on github;

	pushing to the project on github;

Git pull requests

Cover:

	setting up a pull request;

	viewing differences;

	commenting on individual lines;

	multiple pushes;

	updating from another branch;

	github markdown, including checklists!

	online editing of github files.

External Resources

	Github Flow description

http://scottchacon.com/2011/08/31/github-flow.html

 Copyright 2013, C. Titus Brown.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	2013-norwich-bioinfo 0.1 documentation

Session 3: Python packages and installs

Using virtualenv

To create a virtual environment:

python -m virtualenv ~/env

To activate it as your default Python environment:

. ~/env/bin/activate

Now, even without root, you can do pip install of whatever packages
you like.

To deactivate it,

deactivate

Building a ‘setup.py’

In the sqer directory,

	grab the latest ez_setup.py from https://bitbucket.org/pypa/setuptools/raw/bootstrap/ez_setup.py:

curl -O https://bitbucket.org/pypa/setuptools/raw/19873119647deae8a68e9ed683317b9ee170a8d8/ez_setup.py

	Put the following in setup.py:

import ez_setup
ez_setup.use_setuptools()

from setuptools import setup

setup(name="sqer",
 version="0.1",
 packages=['sqer'],
 install_requires=["screed >= 0.7"],
 setup_requires=["nose >= 1.0",],
 scripts=["count-reads.py"],
 test_suite = 'nose.collector',
)

	Put the following in setup.cfg:

[nosetests]
verbosity = 2

Now you can do:

python setup.py test

to run the tests, and:

python setup.py install

This will install ‘sqer’ so that (a) it’s importable from anywhere,

python -c "import sqer"

and (b) the script(s) are in your path so that:

count-read-bp.py data/test-reads.fa

should work from anywhere.

Remember to add and commit to git:

git add setup.cfg setup.py
git commit -am "added install configuration"

Note that if you create a .tar.gz,

cd ..
tar czf /tmp/sqer.tar.gz sqer
cd sqer

you can now do:

pip install /tmp/sqer.tar.gz

and this will also work with URLs to the .tar.gz as well as github
files & release links...

One final comments: ‘git status’ will show you that the directory is
getting messy. Add:

*.egg
*.egg-info
build

to .gitignore, and then commit:

git commit -am "updated gitignore with setup.py detritus"

It’s probably time to do a ‘git push origin master’ too!

Building a default/basic ‘Makefile’

Put the following in ‘Makefile’ in the seqr/ directory:

all:
 python setup.py build

install:
 python setup.py install

clean:
 python setup.py clean
 rm -fr build

test:
 python setup.py test

Note

‘make’ is picky about tabs vs spaces – the lines after the ‘:’ need
to be indented with tabs to work properly.

This will now let us do ‘make’ (which will execute the first target,
‘all’); ‘make install’; ‘make clean’; and ‘make test’. These will
do the obvious things.

The important thing here is that all of these are standard make
commands. If I see a Makefile in a repository, then I assume that
it’s got the commands above. Convention, convention, convention!

Remember to:

git add Makefile
git commit -am "added Makefile"

Documentation

We’re going to build some docs using Sphinx [http://sphinx-doc.org/] and
reStructuredText [http://docutils.sourceforge.net/rst.html].

Do:

mkdir doc
cd doc
sphinx-quickstart

Use default values for everything; specify project name, author, and version.

Now, in the ‘doc’ directory, do:

make html

and look at _build/html/index.html

Let’s flesh this out a bit – edit ‘index.rst’ and add an indented
‘details’ under Contents, e.g.:

Contents:

.. toctree::
 :maxdepth: 2

 details

Now create ‘details.rst’ to contain:

===============
Project Details
===============

sqer is awesome.

Important details
=================

This where all my documentation goes.

...and run ‘make html’ again. Look at _build/html/index.html.

Be sure to do:

rm -fr _build
git add *
git commit -am "added docs"

And also add a rule to the top-level Makefile:

doc:
 cd doc && make html

(and git add/commit the Makefile changes.)

Now, push this all to github:

git push origin master

and let’s go configure it at http://readthedocs.org/.

Reminder: under your github project, settings, service hooks, enable
the ‘readthedocs’ service hook.

 Copyright 2013, C. Titus Brown.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	2013-norwich-bioinfo 0.1 documentation

Session 4: Analysis pipelines and IPython Notebook

A slightly more useful sqer script

Put the following in sqer/calc-lengths.py:

#! /usr/bin/env python
import argparse
import screed
import sqer

def main():
 parser = argparse.ArgumentParser()
 parser.add_argument('filenames', nargs='+')

 args = parser.parse_args()

 total = 0
 for filename in args.filenames:
 records = screed.open(filename)
 for record in records:
 print len(record.sequence)

if __name__ == '__main__':
 main()

then

chmod +x calc-lengths.py
git add calc-lengths.py
git commit -am "added calc-lengths.py"

Exercises

	Write a test for calc-lengths.py!

Write a little analysis pipeline

Create a directory pipeline under sqer:

mkdir pipeline

and copy in the ‘trinity-nematostella.fa.gz’ file from the training files
into this directory (any FASTA/FASTQ file will do here), gunzip it,
and then rename it to assembly.fa.

Now, create pipeline/Makefile containing:

all: lengths.txt

lengths.txt: assembly.fa
 ../calc-lengths.py assembly.fa > lengths.txt

Now, when you type ‘make’, it will run your analysis pipeline.
(...pretend that ‘calc-lengths.py’ takes a long time or something :)

Start up IPython Notebook

From within the pipeline directory, run:

ipython notebook --pylab=inline

Click on ‘New Notebook’. In this new notebook, enter:

data = numpy.loadtxt('lengths.txt')
hist(data, bins=100)
xlabel('Sequence lengths')
ylabel('N sequences with that length')
title('Sequence length spectrum')
savefig('hist.pdf')

and hit ‘Shift-ENTER’ to execute.

Voila!

Save the notebook (File... save...)

Now, do (from within the pipeline directory):

ls -1 assembly.fa lengths.txt > .gitignore
git add Makefile .gitignore *.ipynb
git commit -am "analysis makefile and notebook"

and then:

git push origin master

Now go find the raw URL to your notebook on github, copy it, and then
paste it in at:

http://nbviewer.ipython.org

Voila!

Additional IPython resources:

	The ipynb site: http://ipython.org/notebook.html

	A gallery of interesting notebooks: https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks

	The matplotlib gallery: http://matplotlib.org/gallery.html

Note that you can use ‘%loadpy’ in IPython Notebook to grab code from online
and import it into your notebook automagically.

 Copyright 2013, C. Titus Brown.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	2013-norwich-bioinfo 0.1 documentation

Index

 Copyright 2013, C. Titus Brown.
 Created using Sphinx 1.2.2.

 _static/comment.png

_static/minus.png

_static/plus.png

_static/comment-bright.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

GETTING-STARTED.html

 Navigation

 		
 index

 		2013-norwich-bioinfo 0.1 documentation »

		Edit conf.py and replace ‘labibi’ in the ‘project’ line.

		Either replace or eliminate the Google Analytics ID, the disqus name,
and the github information.

html_context = {
 "google_analytics_id" : 'UA-36028965-1',
 "disqus_shortname" : 'labibi',
 "github_base_account" : 'ctb',
 "github_project" : 'labibi',
}

 © Copyright 2013, C. Titus Brown.
 Created using Sphinx 1.2.2.

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		2013-norwich-bioinfo 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, C. Titus Brown.
 Created using Sphinx 1.2.2.

_static/down.png

